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1 Hilbert’s Nullstellensatz and Spectra of Rings

1.1 Hilbert’s Nullstellensatz

Last time, we were proving Hilbert’s Nullstellensatz. Let R = K[x1, . . . , xn], where K is
algebraically closed.

Theorem 1.1 (Hilbert’s Nullstellensatz). I and V provide mutually inverse, inclusion
reversing bijections {radical ideals of K[x1, . . . , xn]} ↔ {algebraic sets in An

K}.

Proof. It remains to prove that I(V (a)) ⊆
√
a, where a is an ideal of R. Since R is

noetherian, a = (g1, . . . , gk, so R[y] = K[x1, . . . , xn, y] ⊇ J = (g1, . . . , gj , 1 − fy). If
a ∈ V (J), where a = (a1, . . . , an+1, then b := (a1, . . . , an) ∈ V (a), so f(b) = 0. Then
(1 − fy)(a) = 1 − f(b)a = 0, which is impossible. So V (J) = ∅, which means that
J = R[y].

Let I = h(1 − fy) +
∑k

i=1 higi, where h, hi ∈ R[y]. Let N = max({degy(hi) : 1 ≤ i ≤
k} ∪ {hy}). If z = y−1, then zN+1 = h′(z − f) +

∑k
i=1 h

′
igi, where h′, h′i ∈ R[z]. Then

setting z = f gives fN+1 =
∑k

i=1 h
′
i(f)gi ∈ a, so f ∈

√
a.

Remark 1.1. If S ⊆ R, then V (S) = V (
√

(S)), and I(V (S)) =
√

(S). If Z ⊆ An
K , then

I(Z) = I(Z), and V (I(Z)) = Z, where Z is the closure of Z in the Zariski topology.

Definition 1.1. An algebraic set is irreducible if it is not a union of any two proper
algebraic subsets.

Corollary 1.1. I and V restrict to mutually inverse bijections {prime ideals of R} ↔
{irreducible algebraic sets in An

K}.

Proof. If Z is an algebraic set, then Z = V (I), where I is a radical ideal. Then I =
⋂n

i=1 qi,
where qi is primary. Then I =

√
I =

⋂n
i=1

√
qi, so qi =

√
qi is prime for all i. Z is irreducible

if and only if I is irreducible, which means that I is prime (since it it radical and n = 1).
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1.2 Spectra of rings

Definition 1.2. The spectrum Spec(R) of a ring R is its set of prime ideals.

Example 1.1. If R is a PID, then Spec(R) = {(0)} ∪ {(f) : f is irreducible}.

Example 1.2. In R = K[x1, . . . , xn], (0) ( (x1) ( (x1, x2) ( · · · ( (x1, . . . , xn). The
corresponding algebraic subsets decrease in dimension as se go up the chain.

We can define V and I (slightly differently) for general rings.

Definition 1.3. If T ⊆ R, then V (T ) = {p ∈ Spec(R) : T ⊆ p}. If Y ⊆ Spec(R), then
I(Y ) =

⋂
p∈Y p.

Comparison with V and I for R = K[x1, . . . , xn]:

• If T ⊆ R and m ⊆ R is maximal, then T ⊆ m = (x1−a1, . . . , xn−an). So (a1, . . . , an)
is in the vanishing locus of T . If we think of this point as m, then m ∈ V (T ). For
our current definition of V , p ∈ V (T ) ⇐⇒ T ⊆ p. So V extends the notion of the
vanishing locus.

• T corresponds to V ⊆ An
K . Then T ⊆ p ⇐⇒ V contains the irreducible algebraic

set corresponding to p. This is iff V contains all points corresponding to maximal
ideals ⊇ p. On the other hand, T ⊆ p if and only if p ∈ V (T ). Then V (T ) contains
all maximal ideals containing p.

• If Z ⊆ An
K , then the radical ideal I corresponding to Z has the form I =

⋂n
i=1 pi for

pi prime. If we define Y ⊆ Spec(R) to be Y = {p1, . . . , pn}, then I(Y ) =
⋂

p∈Y p =⋂n
i=1 pi = I.

This should give you a rough sense that these are natural extensions of our definitions
to the set of all prime ideals.

Note that V (T ) = V ((T )). If I is an ideal, V (I) = V (
√
I) because if I ⊆ p, then√

I ⊆ √p = p.

Lemma 1.1. V ((0)) = V (0)− Spec(R), and V (R) = ∅.

1. If a, b are ideals of R, then V (a) ∪ V (b) = V (a ∩ b) = V (ab).

2. If {aj : j ∈ X} is a set of ideal, then
⋂

j∈X V (aj) = V (
⋃

j∈X aj) = V (
∑

j∈X aj).

Definition 1.4. The Zariski topology on Spec(R) is the unique topology with closed
sets the V (I), where I ⊆ R is an ideal.

Remark 1.2. In Spec(R), if m is maximal, then {m} is closed. These are the only closed
points, so we call maximal ideals closed points of R. If p is prime but not maximal, then
there exists a maximal ideal m such that p ( m. Then {p} = V (p) ⊇ {p,m}. So {p} is
closed if and only if p is maximal.
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